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ABSTRACT

Spacecraft flying in tetrahedron formations are excellent instrument platforms for electromagnetic and
plasma studies. A minimum of four spacecraft - to establish a volume - is required to study some of the key
regions of a planetary magnetic field. The usefulness of the measurements recorded is strongly affected by the
tetrahedron orbital evolution. This paper considers the preliminary development of a general optimization
procedure for tetrahedron formation control. The maneuvers are assumed to be impulsive and a multi-
stage optimization method is employed. The stages include targeting to a fixed tetrahedron orientation,
rotating and translating the tetrahedron and/or varying the initial and final times. The number of impulsive
maneuvers can also be varied. As the impulse locations and times change, new arcs are computed using a
differential corrections scheme that varies the impulse magnitudes and directions. The result is a continuous
trajectory with velocity discontinuities. The velocity discontinuities are then used to formulate the cost
function. Direct optimization techniques are employed. The procedure is applied to the Magnetospheric
Multiscale Mission (MMS) to compute preliminary formation control fuel requirements.

INTRODUCTION

This paper reports the results of a preliminary study on the development of a general optimization
procedure for tetrahedron formation control. The methods employed, however, are general and could be
applied to other types of formations. In general, for this type of “in-situ” mission maintaining a tight
formation during the orbital evolution is not necessary. It is of importance, however, to maintain tetrahedron
size and shape metrics (quality factors, see ref. 1) within “acceptable” values. Typically, this quality factor
maximization can be achieved by a judicious choice of initial conditions. The formation then evolves naturally
(without maneuvers) while collecting science data. In this investigation, the maneuvers needed to transfer
the formation from its current configuration to the initial conditions at the beginning of the science arc are
examined. In an effort to minimize fuel expenditure, a multi-stage optimization method is employed. The
algorithms developed for this investigation do not make any assumptions on the location and number of
burns that will be used. Direct optimization techniques that have been utilized previously are used (ref. 2).
No claims are made about the global optimality of the solutions, only that the solutions computed are a local
optima given the inputs and constraints. In fact, an experienced analyst might be able to take some of the
resulting solutions and further improve them via numerical experimentation. Nevertheless, the ultimate goal
is to automate the mission design process as much as possible by quickly computing solutions that are at
least local minima. The methodology is applied to the NASA Goddard Magnetospheric Multiscale Mission
to gain understanding about the fuel needed to perform certain tasks.

PREVIOUS WORK

A tetrahedron mission, Cluster II is currently flying and operating successfully (ref. 3). In the process of
planning the Cluster mission, fuel optimization of the maneuvers needed to initialize, modify and maintain
the formation was considered by J. Rodŕıguez-Canabal and M. Belló-Mora (ref. 4). Later a different opti-
mization method was employed by J. Schoenmaekers (ref. 5). In J. Schoenmaekers’s paper, both methods are
compared for one mission scenario. Moreover, a further-developed strategy is presented by M. Belló-Mora
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and Rodŕıguez-Canabal (ref. 6). Implementation and operational results for the maneuvers are reported by
D. Hockens and J. Schoenmaekers (ref. 7). These Cluster references provide a solid foundation for the work
in the current investigation.

In this paper the mission of interest is the MMS Mission (ref. 8). MMS will determine the small-scale
basic plasma processes which transport, accelerate and energize plasmas in thin boundary and current layers.
These processes control the structure and dynamics of the Earth’s magnetosphere. For the interested reader,
preliminary mission design and analysis for MMS, which includes a double lunar swingby for one of its
phases, has been presented by: A. Edery and C. Schiff (ref. 9), A. Edery (ref. 10), J. Guzmán and A. Edery
(ref. 11), C. Petruzzo (ref. 12), and S. Hughes (ref. 13). Furthermore, at some point tetrahedron formations
might be used to study the magnetic field of other bodies in our solar system.

APPROACH

For the purpose of this investigation we will divide the formation flying design into two distinct arcs.
The first arc includes a sequence of maneuvers that transfers the formation from its current configuration
(position and velocity states) to a configuration appropriate for the start of the second arc, the science one. In
this paper, the formation configuration at the beginning of the science arc is called the target configuration.
See Figure 1. Note that the science arc does not contain any maneuvers. In fact, the absence of maneuvers
benefits the science data gathering by limiting the orbital disturbances. The two arcs then lead to two
coupled optimization problems: (1) compute the initial states of the science arc that maximize a certain
tetrahedron quality factor along the science arc, and (2) compute the maneuver sequence that minimizes
the fuel needed to transfer the formation from its current configuration to the target configuration. In this
paper, only the second problem is considered. In refs. 12, 13 the first problem is considered. Since the
two problems are coupled, the goal is to eventually merge these two optimization processes. For now a
target configuration is assumed to develop algorithms that solve the second problem. In other words, the
four states that comprise the target configuration are considered as given for the maneuver optimization
process. Nevertheless, tetrahedron rotations and translations are allowed in the target configuration in order
to further lower the fuel consumption (these changes might not be possible when the two problems are solved
simultaneously).

Science Arc

Maneuver Arc

Figure 1: Maneuver and Science Arcs
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The Concept of a Reference Path

The trajectory design strategy for MMS involves obtaining a reference or nominal path that traverses the
magnetospheric regions of interest. Relative to this defined reference path, a tetrahedron formation is es-
tablished at certain times during the mission. Those times will be specified by the scientists. The science
mission consists of four phases: the first two phases traverse regions of the magnetosphere close to the
magnetic equatorial plane, the third phase contains a double lunar swingby sequence (DLS) with an in-
vestigation of the deep tail magnetospheric region, and the fourth phase explores regions perpendicular to
the ecliptic. The different MMS phases and their corresponding scientific goals are explained by S. Curtis
(ref. 8). The science goals, in turn, help to specify the orbital requirements for each phase. The main orbital
requirements are shown in Table 1 (ref. 8). It is likely that some flexibility in the location of the formation
relative to the reference path might be allowed (if the magnetospheric regions of interest are still traversed
by the formation). Furthermore, the reference trajectory could be redefined. Still, since one of the phases
includes a double lunar swingby, monitoring the formation relative to the reference path is of interest.1

Table 1: MMS Reference Path Orbital Requirements

Mission Phase Perigee Apogee Semi-Major Axis Eccentricity Inclination
(R⊕ ) (R⊕ ) (km) (degrees)

Phase 0 1.2 12 42,094 0.818 28.5∗

Phase 1 1.2 12 42,094 0.818 10∗

Phase 2 1.2 30 99,496 0.923 10-20∗

Phase 3 N/A > 100 N/A N/A N/A
Phase 4 10 50 191,340 0.666 90∗∗

∗ Equatorial Inclination, ∗∗ Ecliptic Inclination

Coordinate Systems

For the purpose of this investigation, three orthogonal Cartesian coordinate systems are employed. The first
system is the inertial Mean of J2000 coordinate frame. The second frame utilizes the reference path orbital
velocity, binormal and normal directions (VBN). The third frame is introduced to consider tetrahedron
translation and rotations. It is placed at the tetrahedron centroid and it is initially coincident with the
second frame. See Figure 2. Table 2 summarizes the frames employed (and their respective origins) and
introduces the unit vector notation used in Figure 2.

t̂1 t̂2

t̂3

î1

î2

î3

Earth⊕

C

O

B̂

N̂

V̂

reference path

Figure 2: MMS Frames

1Because the timing provided by the reference path is important for the lunar encounters.
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Table 2: Coordinate Frames

Type Unit Vectors Origin
Inertial (̂i1, î2, î3) ⊕ - Earth’s center
Rotating (V̂ , B̂, N̂) O - Reference spacecraft (fictitious)
Rotating (t̂1, t̂2, t̂3) C - Tetrahedron centroid

Initial Conditions for the Science Arc

The algorithms developed for this study are independent of the initial states selected for the science arc;
yet the actual computations depend on them. In this section, a method to select the targets states at the
beginning of the science arc is explained (other choices are possible). A regular tetrahedron2 is used to
meet the science data collection requirements. A reference orbit is specified and the individual spacecraft
locations are set using spherical coordinates in the VBN frame (ref. 15). The velocity direction is kept the
same as that of the reference orbit, i.e. the VBN frame velocity direction.3 Then, the velocity magnitude
is obtained using the two-body problem energy or vis-viva equation, thus, v =

√
µ (2/r − 1/a), where v is

the velocity magnitude, r is the position magnitude (radial distance), µ is the gravitational parameter and a
is the semi-major axis. Changing the velocity directions in order to maximize a certain tetrahedron quality
factor has been investigated by C. Petruzzo (ref. 12). The investigation has been extended by S. Hughes
(ref. 13) to consider both the initial positions and velocities.

Initial Guess for the Maneuver Sequence

The first step in optimizing a particular problem is to obtain an initial guess. In this case we obtain
an initial guess by propagating from some initial configuration. The initial states for the maneuver arc
are also specified as explained in the Initial Conditions for the Science Arc section. (This specification
is for computational convenience. During spacecraft operations the states would be set by the formation
configuration at the specified start time for the maneuver arc). Then, the reference and the four spacecraft
formation are propagated without any maneuvers. While propagating, discrete states along the path are
saved. The discretization interval is selected by the user. In this case, a discretization in terms of true
anomaly (TA) along the reference path is utilized. See Figure 3 for TA discretizations of 180, 90, 45 and
22.5 degrees. These TA discretizations provide 3, 5, 9, and 17 patch states respectively. These discrete
states (“patch states”) are states where maneuvers might be implemented. It is important to realize
that a spacecraft path with, for example, 17 maneuvers will not be implemented in practice. Nevertheless,
numerically implementing such a path will show the best locations to perform the maneuvers. (Furthermore,
many of the resulting maneuvers are “small” and can be eliminated and/or combined. As a result, the
analyst can compute operationally feasible solutions).

Figure 3: True Anomaly Discretization: Initial Maneuver Locations

2A regular tetrahedron is useful in cases where sampling of the structure of a field is not as important as understanding its
transient or fluctuating events (ref. 14).

3This assumption is adequate when the spacecraft-to-reference separation is “small” relative to the reference-to-Earth sep-
aration.
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Computing the Optimal Maneuver Sequence

Once the initial and final states have been set for the maneuver sequence, the target/optimization process
can proceed. The optimization approach involves combining the fuel optimization of each spacecraft with the
minimization of the total fuel usage to achieve a target configuration. The total fuel usage is the sum of the
totals for each of the four spacecraft (S/C). In terms of the spacecraft engine, only impulsive maneuvers are
considered (thus only velocity change or ∆V numbers are presented). For computational speed purposes,
the optimization is performed sequentially in two stages: (1) each spacecraft trajectory is optimized by
minimizing the fuel used by each spacecraft to achieve its target location in the tetrahedron, then, (2) the
final tetrahedron configuration is varied (translated and rotated relative to some arbitrary configuration
in the vicinity of the reference path) while minimizing the sum of all the spacecraft ∆V s. Better results
might be obtained by completely embedding step (1) in each iteration of step (2). Nevertheless, if the target
orientation is specified by the scientific requirements and/or by the optimization of a certain quality factor,
step (2) might not be allowed. For both stages, as the impulse locations and times change (i.e., as the initial
TA discretizations in Figure 3 change), new arcs are computed using a differential corrections (targeting)
scheme that varies the impulse magnitudes and directions.

In the first optimization stage and for each spacecraft, the transfer trajectory problem becomes essentially
a rendezvous problem. The techniques introduced in ref. 2 are employed. Each spacecraft path is discretized
into a set of n patch states. The independent variables chosen are the changes in the internal and final patch
state locations and times (i.e., four independent variables at each patch state). Thus, there are 4× (n− 1)
independent variables per spacecraft. For numerical purposes, the changes are constrained to stay within
some user defined limits. Each spacecraft trajectory is optimized independently using the total ∆V as the
cost function. The optimization method selected is the Sequential Quadratic Method (SQP).

In the second optimization stage, the target tetrahedron is allowed to translate within some limits and
to rotate about its centroid. The sum of all the spacecraft ∆V s is the cost function. The optimization
method selected for the second stage is a Genetic Algorithm (GA) that varies 6 independent variables (3
variables for the translation and 3 variables for the rotation). For this preliminary investigation, following
some empirically developed guidelines (ref. 16), a population size of N = 4b, where b is the number of bits
in the binary chromosome, and a mutation probability of Pmut = (b + 1)/2Nb were utilized. The setup for
the GA is still under investigation.

SOME RESULTS FOR MMS

The methodology described in this paper is applied to the MMS mission. The reference orbital states
considered are consistent with the orbit requirements of MMS (see Table 1). At the end of the maneuver arc,
the maximum errors allowed for each spacecraft position and time are 10% of the desired inter-spacecraft
distance and 0.5 seconds respectively. Although the algorithms developed for this study are independent of
the particulars of the force model and integrator, the actual computations depend on them. The dynamical
model that is adopted to represent the forces on the spacecraft includes the gravitational influences of the
Sun, Earth, Moon and Jupiter (obtained from the Jet Propulsion Laboratory Definitive Ephemeris 405 file).
Solar radiation pressure (flat plate model) and the Earth’s J2 Earth gravity harmonic are also included. For
the numerical integration scheme, a Runge-Kutta-Verner 8(9) integrator is utilized. Next, some results are
presented for each mission phase.

Phases 1 and 2

As a test, different cases (with 3, 5, 9, and 17 maneuvers per spacecraft) are examined for one orbit. (The
initial states are specified at the apogee of the reference orbit and the target states are at the next apogee).
For both Phases, three initial and three final tetrahedron sizes (inter-spacecraft separations between each
spacecraft) are considered: 10, 1000, and 2000 km. When the initial and final sizes are the same, the problem
is a maintenance problem; otherwise, it is a re-sizing problem. The results for Phase 1 are in Table 4 and
the results for Phase 2 are in Table 5. Note that the cost associated with Phase 1 is higher than for Phase 2.
This result can be explained by the fact that Phase 1 has a smaller apogee and thus a larger J2 perturbation.
However, a more extensive analysis should be performed to understand the different perturbation effects on
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the tetrahedron evolution during the different orbital phases. While computing some of these test cases,
it was observed that the tetrahedron translation and rotations did not help to lower the total ∆V in the
one-orbit maintenance cases. This fact is not surprising given the fact that only one orbit was considered and
the perturbation effects did not cause the formation to rotate much. It is observed that cases such as a 10
to 1000 km and 1000 to 10 km have similar — but not quite the same — costs. This result can be explained
by examining the requested formation changes in terms of the individual spacecraft orbital elements. Note
that some cases did not “converge”. This label means that either the targeter could not meet the requested
tolerance or that the ∆V computed was too “high”. It is possible to further examine and perhaps “fix” these
cases one by one. Specifically, one could change the tolerances; increase the maximum number of iterations
allowed, etc. However, at this moment interest is in automation and speed.

Phase 3

In Phase 3, the formation will traverse the deep tail of the magnetosphere during a double lunar swingby
sequence. At this point, there is no plan to perform any deterministic maneuvers for formation flying. That
is, the final maneuver at perigee before the first lunar swingby produces a trajectory that requires no further
maneuvers until Phase 4 begins after the second swingby. Thus, the formation will evolve under its natural
dynamics in the perturbed Sun-Earth-Moon system. Non-deterministic maneuvers, however, will be used
for any needed corrections.

Phase 4

After the double lunar swingby sequence, it is of interest to know how much fuel would be required to restore
the tetrahedron at the next apogee. In ref. 11, three maneuvers (after the double lunar swingby) were used
to restore the tetrahedron at the target apogee: the maneuver at perigee, an additional maneuver at the
semi-latus rectum radial distance (this location was just an initial guess), and a maneuver at the target
apogee. The lowest ∆V cost computed was for an initial separation of 10 km at the beginning of Phase 3
and a target separation of 200 km at the apogee after the double lunar swingby. The ∆V results in ref. 11
were higher because each spacecraft was constrained to be at its own apogee at the end of the sequence. In
this investigation, only the reference spacecraft is at its apogee at the target time. Furthermore, as explained
earlier in this section, errors in the final locations and times are allowed. The following results are obtained
for 5 maneuvers (per spacecraft): 1.078 m/s for S/C 1, 0.812 m/s for S/C 2, 1.107 m/s for S/C 3 and 0.532
m/s for S/C 4. See Table 6 for more results. It should be remarked that these tables are different from the
Phases 1 and 2 Tables since the start of the maneuver sequence is at perigee. Thus, the formation traverses
only half of the reference orbit. Furthermore, the formation was initialized before the DLS (at the start of
Phase 3). Therefore, the start of the maneuver sequence is at the perigee after the DLS and the formation
is not in a regular tetrahedron but in some elongated shape with an average inter-spacecraft distance of 24
km.

MMS FUEL BUDGET IMPLICATIONS

Following some of the preliminary ideas in ref. 8, a mission scenario with the following formation re-sizings
can be constructed:

• Phase 1: 1000 → 10 → 1000 → 10 km
• Phase 2: 10 → 2000 → 1000 → 2000 km
• Phase 3: N/A
• Phase 4: Reform with inter-spacecraft distance of 2000 km.

Then, the preliminary fuel requirements displayed in Table 3 can be computed. In this table, many items are
still to be determined (TBD). Note also that the fuel cost in this table does not include error corrections,
attitude, and other maneuvers. The budget allocated in ref. 8 is about 1000 m/s, therefore, the science team
must iterate with the flight dynamics team on the desired formation flying requirements.
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Table 3: ∆V (Per S/C) for Scenario in Ref. 8

Event or Phase ∆V [m/s]
Phase 0 to Phase 1 326
Initializing the formation TBD
Formation Re-sizing Phase 1 140
Formation Maintenance Phase 1 TBD
Phase 1 to Phase 2 277
Formation Re-sizing Phase 2 60
Formation Maintenance Phase 2 TBD
Phase 2 to Phase 3 to Phase 4 150
Formation Re-Configuration Phase 4 10
Formation Re-sizing Phase 4 TBD
Formation Maintenance Phase 4 TBD
TOTAL (adding currently available) 963 ± TBD

FURTHER FUEL COST REDUCTION

Further reduction in the fuel cost can be obtained by running the optimization stages completely nested.
That is, for each new target orientation compute the optimal trajectories for each spacecraft. This process
requires more computational resources but can be done with selected cases. Other resources include, but are
not limited to: (a) varying the final (target) time, (b) establishing the tetrahedron relative to one of the four
spacecraft (thus, one spacecraft is not required to maneuver), (c) allowing several orbit revolutions before
performing any maneuvers (e.g. maintenance), etc. In option (b), the analyst should check that deviations
from the desired reference path do not have adverse science and trajectory effects. Additional insight is
obtained by looking at the required configuration changes in terms of the orbital elements. This insight
might lead the analyst to lower cost solutions. In fact, by computing the orbital elements, it can be shown
that formation re-sizings require mostly line of nodes and line of apsides changes.

SUMMARY

In this paper the problem of maneuvering a tetrahedron formation while minimizing fuel expenditure
is considered. The optimization is performed sequentially in two stages: (1) each spacecraft trajectory is
optimized by minimizing the fuel used by each spacecraft to achieve its target location in the tetrahedron,
then, (2) the final tetrahedron configuration is varied (translated and rotated relative to some arbitrary
configuration in the vicinity of the reference path) while minimizing the sum of all the spacecraft ∆V s. The
methodology is applied to the NASA Goddard Magnetospheric Multiscale Mission to gain understanding
about the fuel needed to perform certain tasks. No claims are made about the global optimality of the
solutions; only that the solutions computed are a local optima given the inputs and constraints. Nonetheless,
the ultimate goal is to automate the mission design process as much as possible by quickly computing solutions
that are at least local minima. Future work includes the simultaneous optimization of the maneuver and
science arcs, the application of the methodology to different mission scenarios, the inclusion of operational
considerations/constraints and the integration of the developed software into the NASA Goddard mission
analysis tools.
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Table 4: ∆V Cost for Different Cases in Phase 1

Impulses per S/C ∆VSC1 ∆VSC2 ∆VSC3 ∆VSC4 ∆VTOTAL [m/s]
10 to 10 km

3 0.253 0.235 0.077 0.187 0.752
5 0.028 0.023 0.010 0.022 0.084
9 0.029 0.029 0.031 0.026 0.115
17 0.042 0.036 0.046 0.032 0.156

10 to 1000 km
3 41.117 58.301 66.300 ∗ N/A
5 39.042 52.567 59.247 56.586 207.442
9 42.195 47.223 60.079 32.298 181.795
17 67.829 47.910 39.409 68.365 223.512

10 to 2000 km
3 82.772 116.749 132.839 ∗ N/A
5 69.385 120.594 93.236 126.301 409.516
9 77.264 61.698 148.880 74.064 361.906
17 78.616 146.109 144.089 74.454 443.269

1000 to 10 km
3 39.749 58.320 69.079 ∗ N/A
5 38.584 52.718 59.994 56.589 207.885
9 35.835 50.819 58.251 44.049 188.954
17 39.184 62.433 69.373 60.850 231.840

1000 to 1000 km
3 0.508 0.592 1.275 0.081 2.457
5 0.420 0.554 1.231 0.088 2.293
9 0.415 0.563 1.219 0.102 2.299
17 0.616 0.754 1.706 0.114 3.189

1000 to 2000 km
3 41.205 55.613 66.832 ∗ N/A
5 39.723 51.590 59.229 57.785 208.327
9 36.540 49.710 58.098 44.388 188.736
17 40.016 61.444 68.990 61.490 231.939

2000 to 10 km
3 78.732 115.462 144.820 ∗ N/A
5 77.412 104.583 121.030 114.301 417.326
9 71.936 101.521 118.155 88.540 380.153
17 78.758 125.638 139.962 122.593 466.950

2000 to 1000 km
3 38.559 45.998 71.591 ∗ N/A
5 38.514 52.814 62.622 57.765 211.715
9 35.859 51.287 60.888 44.602 192.637
17 39.317 63.586 71.842 61.705 236.450

2000 to 2000 km
3 0.914 1.097 3.186 0.154 5.351
5 0.814 1.078 2.870 0.173 4.936
9 0.772 1.074 2.829 0.179 4.853
17 1.149 1.433 3.955 0.189 6.726

∗ did not converge
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Table 5: ∆V Cost for Different Cases in Phase 2

Impulses per S/C ∆VSC1 ∆VSC2 ∆VSC3 ∆VSC4 ∆VTOTAL [m/s]
10 to 10 km

3 0.076 0.043 0.011 0.024 0.153
5 0.025 0.022 0.022 0.023 0.092
9 0.026 0.027 0.028 0.025 0.105
17 0.037 0.037 0.040 0.037 0.151

10 to 1000 km
3 17.491 23.479 23.479 ∗ N/A
5 15.203 19.530 20.617 21.954 77.304
9 12.794 15.701 19.958 8.847 57.300
17 24.324 9.329 10.069 13.354 57.077

10 to 2000 km
3 35.130 46.833 46.612 ∗ N/A
5 45.762 44.764 32.428 28.986 151.940
9 21.847 23.541 52.335 16.014 113.738
17 21.790 44.021 16.849 31.597 114.257

1000 to 10 km
3 17.165 23.630 27.834 ∗ N/A
5 14.823 19.980 21.078 22.037 77.918
9 12.349 16.424 19.565 12.669 61.008
17 11.149 16.599 20.483 12.704 60.936

1000 to 1000 km
3 0.496 1.018 1.139 0.308 2.962
5 0.453 0.432 0.989 0.250 2.124
9 0.302 0.337 0.707 0.216 1.563
17 0.274 0.340 0.688 0.216 1.518

1000 to 2000 km
3 18.440 22.728 23.067 ∗ N/A
5 15.613 19.066 20.522 22.293 77.494
9 12.783 15.889 19.450 12.596 60.718
17 16.976 17.150 16.283 22.126 72.534

2000 to 10 km
3 78.732 115.462 144.820 ∗ N/A
5 30.032 39.156 43.167 44.310 156.664
9 24.644 32.582 40.185 25.438 122.848
17 22.281 33.145 41.822 25.498 122.745

2000 to 1000 km
3 14.441 37.554 42.702 ∗ N/A
5 14.772 19.935 22.848 22.391 79.945
9 12.192 16.666 20.923 12.902 62.682
17 11.007 16.854 21.711 12.933 62.505

2000 to 2000 km
3 1.003 1.265 3.331 0.655 6.253
5 0.867 0.803 2.274 0.482 4.426
9 0.563 0.621 1.607 0.407 3.198
17 0.492 0.612 1.575 0.395 3.073

∗ did not converge

10



Table 6: ∆V Cost for Restoring the Tetrahedron in Phase 4

Impulses per S/C ∆VSC1 ∆VSC2 ∆VSC3 ∆VSC4 ∆VTOTAL [m/s]
24 (avg.) to 200 km

3 1.260 0.393 0.866 1.104 3.623
5 1.078 0.812 1.107 0.532 3.530
9 1.141 1.083 1.358 1.584 5.166

24 (avg.) to 1000 km
3 3.599 4.309 4.985 4.907 17.799
5 3.824 4.862 5.330 4.911 18.927
9 7.564 7.948 6.287 5.777 27.577

24 (avg.) to 2000 km
3 6.343 10.917 10.537 9.307 37.104
5 14.135 5.406 8.666 10.860 39.066
9 13.731 12.688 19.284 12.388 58.092
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